This special issue collects a selection of peer-review papers presented at the 8th International Conference INPUT 2014 titled “Smart City: planning for energy, transportation and sustainability of urban systems”, held on 4-6 June in Naples, Italy. The issue includes recent developments on the theme of relationship between innovation and city management and planning.

TeMA is the Journal of Land use, Mobility and Environment and offers papers with a unified approach to planning and mobility. TeMA Journal has also received the Sparc Europe Seal of Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ).
SMART CITY

PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

Special Issue, June 2014

Published by
Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"

TeMA is realised by CAB - Center for Libraries at "Federico II" University of Naples using Open Journal System

Editor-in-chief: Rocco Papa
print ISSN 1970-9889 | on line ISSN 1970-9870
Lycence: Cancelleria del Tribunale di Napoli, n° 6 of 29/01/2008

Editorial correspondence
Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"
Piazzale Tecchio, 80
80125 Naples
web: www.tema.unina.it
e-mail: redazione.tema@unina.it
TeMA Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems.

The Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) classified TeMA as scientific journals in the Areas 08. TeMA has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ). TeMA is published under a Creative Commons Attribution 3.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists by their competences. TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR- IN-CHIEF

Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORIAL ADVISORY BOARD

Luca Bertolini, Universiteit van Amsterdam, Netherlands
Virgilio Bettini, Università luav di Venezia, Italy
Dino Borri, Politecnico di Bari, Italy
Enrique Calderon, Universidad Politécnica de Madrid, Spain
Roberto Camagni, Politecnico di Milano, Italy
Robert Leonardi, London School of Economics and Political Science, United Kingdom
Raffaella Nanetti, College of Urban Planning and Public Affairs, United States
Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy
Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORS

Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy
Enrique Calderon, Universidad Politécnica de Madrid, Spain
Luca Bertolini, Universiteit van Amsterdam, Netherlands
Romano Fistola, Dept. of Engineering - University of Sannio - Italy
Adriana Galderisi, Università degli Studi di Napoli Federico II, Italy
Carmela Gargiulo, Università degli Studi di Napoli Federico II, Italy
Giuseppe Mazzeo, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy

EDITORIAL SECRETARY

Rosaria Battarra, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy
Andrea Ceudech, TeMALab, Università degli Studi di Napoli Federico II, Italy
Rosa Anna La Rocca, TeMALab, Università degli Studi di Napoli Federico II, Italy
Enrica Papa, University of Amsterdam, Netherlands
This special issue of TeMA collects the papers presented at the 8th International Conference INPUT 2014 which will take place in Naples from 4th to 6th June. The Conference focuses on one of the central topics within the urban studies debate and combines, in a new perspective, researches concerning the relationship between innovation and management of city changing.

Conference Committee

Dino Borri, Polytechnic University of Bari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Romano Fistola, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Agostino Nuzzolo, University of Rome, Italy
Rocco Papa, University of Naples Federico II, Italy
Giovanni Rabino, Polytechnic University of Milan, Italy
Maurizio Tira, University of Brescia, Italy
Corrado Zoppi, University of Cagliari, Italy

Scientific Committee

Emanuela Abis, University of Cagliari, Italy
Nicola Bellini, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Mariolina Besio Dominici, University of Genoa, Italy
Ivan Blecic, University of Sassari, Italy
Dino Borri, Polytechnic University of Bari, Italy
Grazia Brunetta, Polytechnic University of Turin, Italy
Roberto Busi, University of Brescia, Italy
Domenico Camarda, Polytechnic University of Bari, Italy
Michele Campagna, University of Cagliari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Donatella Cialdea, University of Molise, Italy
Valerio Cutini, University of Pisa, Italy, Italy
Luciano De Bonis, University of Molise, Italy
Andrea De Montis, University of Sassari, Italy
Filippo de Rossi, University of Sannio (Dean of the University of Sannio), Italy
Lidia Diappi, Polytechnic University of Milan, Italy
Isidoro Fasolino, University of Salerno, Italy
Mariano Gallo, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Roberto Gerundo, University of Salerno, Italy
Paolo La Greca, University of Catania, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Robert Laurini, University of Lyon, France
Antonio Leone, Tuscia University, Italy
Anna Loffredo, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Silvana Lombardo, University of Pisa, Italy
Giovanni Maciocci, University of Sassari, Italy
Giulio Maternini, University of Brescia, Italy
Francesco Domenico Moccia, University of Naples Federico II, Italy
Bruno Montella, University of Naples “Federico II” (Director of DICEA), Italy
Beniamino Murgante, University of Basilicata, Italy
Agostino Nuzzolo, University of Rome, Italy
Sylvie Occelli, IRES Turin, Italy
Rocco Papa, University of Naples Federico II, Italy
Maria Paradiso, University of Sannio, Italy
Domenico Patassini, IUAV, Venice, Italy
Michele Pezzagno, University of Brescia, Italy
Fulvia Pinto, Polytechnic University of Milan, Italy
Giovanni Rabino, Polytechnic University of Milan, Italy
Giuseppe Roccasalva, Polytechnic University of Turin, Italy
Bernardino Romano, University of L'Aquila, Italy
Francesco Russo, Mediterranean University Reggio Calabria, Italy
Michelangelo Russo, University of Naples Federico II, Italy
Ferdinando Semboloni, University of Firenze, Italy
Agata Spaziante, Polytechnic University of Turin, Italy
Michela Tiboni, University of Brescia, Italy
Maurizio Tira, University of Brescia, Italy
Simona Tondelli, University of Bologna, Italy
Umberto Villano, University of Sannio (Director of DING), Italy
Ignazio Vinci, University of Palermo, Italy
Corrado Zoppi, University of Cagliari, Italy

LOCAL SCIENTIFIC COMMITTEE

Rosaria Battarra, ISSM, National Research Council, Italy
Romano Fistola, DING, University of Sannio, Italy
Lilli Gargiulo, DICEA, University of Naples Federico II, Italy
Adriana Galdneris, DICEA, University of Naples Federico II, Italy
Rosa Anna La Rocca, DICEA, University of Naples Federico II, Italy
Giuseppe Mazzeo, ISSM, National Research Council, Italy
Enrica Papa, University of Amsterdam, Netherlands

LOCAL ADMINISTRATIVE TEAM

Gennaro Angiello, TeMA Lab, University of Naples Federico II, Italy
Gerardo Carpentieri, TeMA Lab, University of Naples Federico II, Italy
Stefano Franco, TeMA Lab, University of Naples Federico II, Italy
Laura Russo, TeMA Lab, University of Naples Federico II, Italy
Floriana Zucaro, TeMA Lab, University of Naples Federico II, Italy
EIGHTH INTERNATIONAL CONFERENCE INPUT 2014

SMART CITY. PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

This special issue of TeMA collects the papers presented at the Eighth International Conference INPUT, 2014, titled "Smart City. Planning for energy, transportation and sustainability of the urban system" that takes place in Naples from 4 to 6 of June 2014.

INPUT (Innovation in Urban Planning and Territorial) consists of an informal group/network of academic researchers Italians and foreigners working in several areas related to urban and territorial planning. Starting from the first conference, held in Venice in 1999, INPUT has represented an opportunity to reflect on the use of Information and Communication Technologies (ICTs) as key planning support tools. The theme of the eighth conference focuses on one of the most topical debate of urban studies that combines, in a new perspective, researches concerning the relationship between innovation (technological, methodological, of process etc..) and the management of the changes of the city. The Smart City is also currently the most investigated subject by TeMA that with this number is intended to provide a broad overview of the research activities currently in place in Italy and a number of European countries. Naples, with its tradition of studies in this particular research field, represents the best place to review progress on what is being done and try to identify some structural elements of a planning approach.

Furthermore the conference has represented the ideal space of mind comparison and ideas exchanging about a number of topics like: planning support systems, models to geo-design, qualitative cognitive models and formal ontologies, smart mobility and urban transport, Visualization and spatial perception in urban planning innovative processes for urban regeneration, smart city and smart citizen, the Smart Energy Master project, urban entropy and evaluation in urban planning, etc..

The conference INPUT Naples 2014 were sent 84 papers, through a computerized procedure using the website www.input2014.it. The papers were subjected to a series of monitoring and control operations. The first fundamental phase saw the submission of the papers to reviewers. To enable a blind procedure the papers have been checked in advance, in order to eliminate any reference to the authors. The review was carried out on a form set up by the local scientific committee. The review forms received were sent to the authors who have adapted the papers, in a more or less extensive way, on the base of the received comments. At this point (third stage), the new version of the paper was subjected to control for to standardize the content to the layout required for the publication within TeMA. In parallel, the Local Scientific Committee, along with the Editorial Board of the magazine, has provided to the technical operation on the site TeMA (insertion of data for the indexing and insertion of pdf version of the papers). In the light of the time's shortness and of the high number of contributions the Local Scientific Committee decided to publish the papers by applying some simplifies compared with the normal procedures used by TeMA. Specifically:

− Each paper was equipped with cover, TeMA Editorial Advisory Board, INPUT Scientific Committee, introductory page of INPUT 2014 and summary;
− Summary and sorting of the papers are in alphabetical order, based on the surname of the first author;
− Each paper is indexed with own DOI codex which can be found in the electronic version on TeMA website (www.tema.unina.it). The codex is not present on the pdf version of the papers.
SMART CITY
PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM
Special Issue, June 2014

Contents

 Fabio Andreassi, Pierluigi Properzi
 1-13

 Grazielle Anjos Carvalho
 15-26

3. **Temporary Dwelling of Social Housing in Turin. New Responses to Housing Discomfort**
 Giulia Baù, Luisa Ingaramo
 27-37

4. **Smart Communities. Social Innovation at the Service of the Smart Cities**
 Massimiliano Bencardino, Ilaria Greco
 39-51

 Ivan Blečić, Dario Canu, Arnaldo Cecchini, Giuseppe Andrea Trunfio
 53-63

 Ivan Blečić, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancello, Giuseppe Andrea Trunfio
 65-76

7. **Diachronic Analysis of Parking Usage: The Case Study of Brescia**
 Riccardo Bonotti, Silvia Rossetti, Michela Tiboni, Maurizio Tira
 77-85

8. **Crowdsourcing. A Citizen Participation Challenge**
 Júnia Borges, Camila Zyngier
 87-96

 Júnia Borges, Camila Zyngier, Karen Lourenço, Jonatha Santos
 97-108
10. Dilemmas in the Analysis of Technological Change. A Cognitive Approach to Understand Innovation and Change in the Water Sector
Dino Borri, Laura Grassini
109-127

11. Learning and Sharing Technology in Informal Contexts. A Multiagent-Based Ontological Approach
Dino Borri, Domenico Camarda, Laura Grassini, Mauro Patano
129-140

12. Smartness and Italian Cities. A Cluster Analysis
Flavio Boscacci, Ila Maltese, Ilaria Mariotti
141-152

13. Beyond Defining the Smart City. Meeting Top-Down and Bottom-Up Approaches in the Middle
Jonas Breuer, Nils Walravens, Pieter Ballon
153-164

14. Resilience Through Ecological Network
Grazia Brunetta, Angioletta Voghera
165-173

15. ITS System to Manage Parking Supply: Considerations on Application to the “Ring” in the City of Brescia
Susanna Bulferetti, Francesca Ferrari, Stefano Riccardi
175-186

16. Formal Ontologies and Uncertainty. In Geographical Knowledge
Matteo Caglioni, Giovanni Fusco
187-198

17. Geodesign From Theory to Practice: In the Search for Geodesign Principles in Italian Planning Regulations
Michele Campagna, Elisabetta Anna Di Cesare
199-210

18. Geodesign from Theory to Practice: From Metaplanning to 2nd Generation of Planning Support Systems
Michele Campagna
211-221

19. The Energy Networks Landscape. Impacts on Rural Land in the Molise Region
Donatella Cialdea, Alessandra Maccarone
223-234

20. Marginality Phenomena and New Uses on the Agricultural Land. Diachronic and Spatial Analyses of the Molise Coastal Area
Donatella Cialdea, Luigi Mastronardi
235-245

21. Spatial Analysis of Urban Squares. ‘Siccome Umbellico al corpo dell’uomo’
Valerio Cutini
247-258
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.</td>
<td>Co-Creative, Re-Generative Smart Cities.</td>
<td>Luciano De Bonis, Grazia Concilio, Eugenio Leanza, Jesse Marsh, Ferdinando Trapani</td>
<td>259-270</td>
</tr>
<tr>
<td>23.</td>
<td>The Model of Voronoi's Polygons and Density:</td>
<td>Diogo De Castro Guadalupe, Ana Clara Mourão Moura</td>
<td>271-283</td>
</tr>
<tr>
<td>24.</td>
<td>The Model of Voronoi's Polygons and Density:</td>
<td>Diogo De Castro Guadalupe, Ana Clara Mourão Moura</td>
<td>271-283</td>
</tr>
<tr>
<td>25.</td>
<td>Landscape Planning and Ecological Networks.</td>
<td>Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda,</td>
<td>297-307</td>
</tr>
<tr>
<td></td>
<td>Part A. A Rural System in Nuoro, Sardinia</td>
<td>Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luigi Laudari, Carmelo Riccardo Fichera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part B. A Rural System in Nuoro, Sardinia</td>
<td>Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda,</td>
<td>309-320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luigi Laudari, Carmelo Riccardo Fichera</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part B. A Rural System in Nuoro, Sardinia</td>
<td>Gianluca Cocco, Agnese Marcus</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Energy And Environment in Urban Regeneration.</td>
<td>Paolo De Pascali, Valentina Alberti, Daniela De Ioris, Michele Reginaldi</td>
<td>331-339</td>
</tr>
<tr>
<td>28.</td>
<td>Achieving Smart Energy Planning Objectives.</td>
<td>Ilaria Delponte</td>
<td>341-351</td>
</tr>
<tr>
<td>29.</td>
<td>From a Smart City to a Smart Up-Country.</td>
<td>Donato Di Ludovico, Pierluigi Properzi, Fabio Graziosi</td>
<td>353-364</td>
</tr>
<tr>
<td>30.</td>
<td>Geovisualization Tool on Urban Quality.</td>
<td>Enrico Eynard, Marco Santangelo, Matteo Tabasso</td>
<td>365-375</td>
</tr>
</tbody>
</table>
The Case of Out-of-Scale Buildings
Enrico Fabrizio, Gabriele Garnero
377-388

33. Smart Dialogue for Smart Citizens:
Assertive Approaches for Strategic Planning
Isidoro Fasolino, Maria Veronica Izzo
389-401

34. Digital Social Networks and Urban Spaces
Pablo Vieira Florentino, Maria Célia Furtado Rocha, Gilberto Corso Pereira
403-415

35. Social Media Geographic Information in Tourism Planning
Roberta Floris, Michele Campagna
417-430

36. Re-Use/Re-Cycle Territories:
A Retroactive Conceptualisation for East Naples
Enrico Formato, Michelangelo Russo
431-440

37. Urban Land Uses and Smart Mobility
Mauro Francini, Annunziata Palermo, Maria Francesca Viapiana
441-452

38. The Design of Signalised Intersections at Area Level.
Models and Methods
Mariano Gallo, Giuseppina De Luca, Luca D’acierno
453-464

Roberto Gerundo, Gabriella Graziuso
465-476

40. Social Housing in Urban Regeneration.
Regeneration Heritage Existing Building: Methods and Strategies
Maria Antonia Giannino, Ferdinando Orabona
477-486

41. Using GIS to Record and Analyse Historical Urban Areas
Maria Giannopoulou, Athanasios P. Vavatsikos, Konstantinos Lykostratis, Anastasia Roukouni
487-497

42. Network Screening for Smarter Road Sites: A Regional Case
Attila Grieco, Chiara Montaldo, Sylvie Occelli, Silvia Tarditi
499-509

43. Li-Fi for a Digital Urban Infrastructure:
A Novel Technology for the Smart City
Corrado Iannucci, Fabrizio Pini
511-522

44. Open Spaces and Urban Ecosystem Services.
Cooling Effect towards Urban Planning in South American Cities
Luis Inostroza
523-534
45. From RLP to SLP: Two Different Approaches to Landscape Planning
Federica Isola, Cheti Pira
535-543

Space Organization A Case Study of Manchester in UK, Lyon in France and Łódź in Poland
Jarosław Kazimierczak
545-556

47. Geodesign for Urban Ecosystem Services
Daniele La Rosa
557-565

48. An Ontology of Implementation Plans of Historic Centers:
A Case Study Concerning Sardinia, Italy
Sabrina Lai, Corrado Zoppi
567-579

49. Open Data for Territorial Specialization Assessment.
Territorial Specialization in Attracting Local Development Funds:
an Assessment. Procedure Based on Open Data and Open Tools
Giuseppe Las Casas, Silvana Lombardo, Beniamino Murgante,
Piergiuseppe Pontrandolfo, Francesco Scorza
581-595

50. Sustainability And Planning.
Thinking and Acting According to Thermodynamics Laws
Antonio Leone, Federica Gobattoni, Raffaele Pelerosso
597-606

51. Strategic Planning of Municipal Historic Centers.
A Case Study Concerning Sardinia, Italy
Federica Leone, Corrado Zoppi
607-619

52. A GIS Approach to Supporting Nightlife Impact Management:
The Case of Milan
Giorgio Limonta
621-632

53. Dealing with Resilience Conceptualisation. Formal Ontologies as a Tool
for Implementation of Intelligent Geographic Information Systems
Giampiero Lombardini
633-644

54. Social Media Geographic Information:
Recent Findings and Opportunities for Smart Spatial Planning
Pierangelo Massa, Michele Campagna
645-658

Inductive Recharge System Planning in Urban Areas
Giulio Maternini, Stefano Riccardi, Margherita Cadei
659-669
<table>
<thead>
<tr>
<th>Article Number</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Urban Labelling: Resilience and Vulnerability as Key Concepts for a Sustainable Planning</td>
<td>Giuseppe Mazzeo</td>
<td>671-682</td>
</tr>
<tr>
<td>57</td>
<td>Defining Smart City. A Conceptual Framework Based on Keyword Analysis</td>
<td>Farnaz Mosannenzadeh, Daniele Vettorato</td>
<td>683-694</td>
</tr>
<tr>
<td>58</td>
<td>Parametric Modeling of Urban Landscape: Decoding the Brasilia of Lucio Costa from Modernism to Present Days</td>
<td>Ana Clara Moura, Suellen Ribeiro, Isadora Correa, Bruno Braga</td>
<td>695-708</td>
</tr>
<tr>
<td>59</td>
<td>Smart Mediterranean Logics. Old-New Dimensions and Transformations of Territories and Cites-Ports in Mediterranean</td>
<td>Emanuela Nan</td>
<td>709-718</td>
</tr>
<tr>
<td>60</td>
<td>Mapping Smart Regions. An Exploratory Approach</td>
<td>Sylvie Occelli, Alessandro Sciullo</td>
<td>719-728</td>
</tr>
<tr>
<td>61</td>
<td>Planning Un-Sustainable Development of Mezzogiorno. Methods and Strategies for Planning Human Sustainable Development</td>
<td>Ferdinando Orabona, Maria Antonia Giannino</td>
<td>729-736</td>
</tr>
<tr>
<td>63</td>
<td>Integrated Urban System and Energy Consumption Model: Residential Buildings</td>
<td>Rocco Papa, Carmela Gargiulo, Gerardo Carpentieri</td>
<td>749-758</td>
</tr>
<tr>
<td>64</td>
<td>Integrated Urban System and Energy Consumption Model: Public and Singular Buildings</td>
<td>Rocco Papa, Carmela Gargiulo, Mario Cristiano</td>
<td>759-770</td>
</tr>
<tr>
<td>65</td>
<td>Urban Smartness Vs Urban Competitiveness: A Comparison of Italian Cities Rankings</td>
<td>Rocco Papa, Carmela Gargiulo, Stefano Franco, Laura Russo</td>
<td>771-782</td>
</tr>
<tr>
<td>67</td>
<td>Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans</td>
<td>Rocco Papa, Carmela Gargiulo, Floriana Zucaro</td>
<td>793-804</td>
</tr>
</tbody>
</table>
68. Bio-Energy Connectivity And Ecosystem Services.
 An Assessment by Pandora 3.0 Model for Land Use Decision Making
 Raffaele Pelorosso, Federica Gobattoni, Francesco Geri,
 Roberto Monaco, Antonio Leone
 805-816

69. Entropy and the City. GHG Emissions Inventory:
 a Common Baseline for the Design of Urban and Industrial Ecologies
 Michele Pezzagno, Marco Rosini
 817-828

70. Urban Planning and Climate Change: Adaptation and Mitigation Strategies
 Fulvia Pinto
 829-840

71. Urban Gaming Simulation for Enhancing Disaster Resilience.
 A Social Learning Tool for Modern Disaster Risk Management
 Sarunwit Promsaka Na Sakonnakron, Pongpisit Huyakorn, Paola Rizzi
 841-851

72. Visualisation as a Model. Overview on Communication Techniques
 in Transport and Urban Planning
 Giovanni Rabino, Elena Masala
 853-862

73. Ontologies and Methods of Qualitative Research in Urban Planning
 Giovanni Rabino
 863-869

74. City/Sea Searching for a New Connection.
 Regeneration Proposal for Naples Waterfront Like an Harbourscape:
 Comparing Three Case Studies
 Michelangelo Russo, Enrico Formato
 871-882

75. Sensitivity Assessment. Localization of Road Transport Infrastructures
 in the Province of Lucca
 Luisa Santini, Serena Pecori
 883-895

76. Creating Smart Urban Landscapes.
 A Multimedia Platform for Placemaking
 Marichela Sepe
 897-907

77. Virtual Power Plant. Environmental Technology Management Tools
 of The Settlement Processes
 Maurizio Sibilla
 909-920

78. Ecosystem Services and Border Regions.
 Case Study from Czech – Polish Borderland
 Marcin Spyra
 921-932

79. The Creative Side of the Reflective Planner. Updating the Schön’s Findings
 Maria Rosaria Stufano Melone, Giovanni Rabino
 933-940
80. Achieving People Friendly Accessibility.
Key Concepts and a Case Study Overview
Michela Tiboni, Silvia Rossetti
941-951

81. Planning Pharmacies: An Operational Method to Find the Best Location
Simona Tondelli, Stefano Fatone
953-963

82. Transportation Infrastructure Impacts Evaluation:
The Case of Egnatia Motorway in Greece
Athanasios P. Vavatsikos, Maria Giannopoulou
965-975

83. Designing Mobility in a City in Transition.
Challenges from the Case of Palermo
Ignazio Vinci, Salvatore Di Dio
977-988

84. Considerations on the Use of Visual Tools in Planning Processes:
A Brazilian Experience
Camila Zyngier, Stefano Pensa, Elena Masala
989-998
ABSTRACT

Recently, there has been an increasing need to apply methods for the estimation of the visual impact of buildings that are out-of-scale on its surrounding urban space, such as skyscrapers. In this paper, a method developed by the authors for the visual impact of buildings based on the viewshed analysis is applied to the out-of-scale buildings of the city of Turin. The method goes beyond the sole information if a cell is visible or not, which is typical of viewshed analyses, and also takes into account the various factors that cause the visual attenuation with the distance such as the visual acuity, the contrast between the target and the surrounding, the atmospheric visibility and the recognition process of the subject. The application of this methodology is done on two out-of-scale buildings of the city of Turin – Italy (two skyscrapers, one of which is under construction, located in different areas of the city). From the visibility maps, in various conditions, it can be noted how the new buildings are or will recently be major landmarks not for the entire city but also for the surrounding municipalities.

KEYWORDS

urban environment; viewshed analysis; skyscrapers; visual perception;
1 INTRODUCTION

Usually visual impact refers to the modifications that a new development has on the viewing conditions of a landscape, however it is seldom an easy task to determine the effect of the view obstructions and the reshaping of the skyline, both in urban (Moser et al., 2010; Guney et al., 2012) and rural areas. For an urban visibility study, it is necessary to take into account, besides the topography, the building elevations and the urban atmospheric visibility. Visibility studies for rural and forest landscape are well established in the scientific literature in the last years, while there are not many visibility studies for the urban space, and most of them are based on a 2D representation (e.g. isovist) due to the difficulty to take into account building heights and other factors. Otherwise, it is possible to concentrate only on a small parts of a city, as some recent studies have done (Bartie et al., 2013). Among the factors that can modify the viewing conditions in a city there are certainly the out-of-scale buildings like skyscrapers, especially in urban environments characterized by uniform building heights like many European cities.

In the design of a skyscraper, the most important modifications on the urban landscape that should be studied are the variation of the skyline of the city, the visibility of the building from visual corridors of the main streets and the compatibility with the surrounding architecture, especially when such projects are developed in traditional Italian cities that are characterized by building height low and where buildings are comfortably seen by people on streets (Minucciani and Garnero, 2013). In such cases, there is the need to estimate the visual impact of a building on its surrounding, in order not only to redesign the city skyline from some representative viewpoints, but also to understand where this building can be seen from and how much of it can be seen. Urban landscape studies can answer these questions.

The city of Turin has been thinking about the construction of new out-of-scale buildings for a long time. First, in 1995 the new land-use planning instrument of the city allowed the construction of two tower buildings in an area near the historical city centre and in correspondence of a new main street that covered the railways. These towers had a maximum number of floors equal to 21 and a total height of 75 m maximum. Later on, through various modifications, the maximum height went beyond the value of 75 m up to 150 and finally in 2008 to 210 m for a second skyscraper. From the first idea of two towers, many new projects have been designed and by now two main skyscrapers are under construction (one in the original location of the first tower, the second one in a different location) and various projects for new skyscrapers are under development. This has also been generating a vast debate on the opportunity of building such new out-of-scale buildings in a city like Turin which is characterized by building height lower than 20 m (De Rossi and Durbiano, 2006). The present paper intends to give a quantitative and objective contribution about the estimation of the visual impact of such new out-of-scale buildings.

2 OBJECTIVES

In order to study the visibility of an out-of-scale building within a urban environment it is necessary to use GIS procedures that consider together both terrain and built environment representations and model the interaction between humans and the space.

In this work, a visibility study on the two new out-of-scale buildings of the city of Turin is conducted by means of a method, sufficiently simple but accurate, to generate visibility maps of symbolic buildings that applies not only the standard binary approach that is used in visibility analysis (an integer result to identify if the cell of a raster is visible or not), but also takes into account more realistic factors that depend on the human vision and on the outdoor environment like the visual acuity, the atmospheric extinction and a visual psychological threshold. The detailed discussion of this method can be found on Garnero and Fabrizio (in...
press). Finally, it should be noted that the visibility analysis performed in this study were developed on the area of the entire city of Turin, which counts 130 km\(^2\), and it is one of the largest cities in Italy.

3 MATERIALS AND METHODS

Visibility studies in urban space were conducted in the past by means of isovists (Benedikt, 1979). An isovist is the visual field that is wholly visible from a certain single point that is the feature of interest and it is mapped as the continuous area of a two dimension polygon. With the creation of isovist generating computer applications (Dalton and Dalton, 2001), there has been the possibility of moving the point of interest. The concept of isovist (Batty, 2001) has been later employed for the study of spatial properties of indoor spaces (Turner et al., 2001; Franz and Wiener, 2005; Wiener et al., 2007; Arabacioglu, 2010) rather than urban spaces.

A viewshed is a binary representation of the visibility of a location from a certain viewpoint and is usually computed by means of standard functions of GIS software tools from the DTM. The result is a Boolean variable that identifies if each cell is visible (value 1) or not (value 0) from a certain viewpoint. When the results of various viewsheds from different viewpoints are added up using raster algebra of GIS tool, the result is called cumulative viewshed and is characterized by an integer result: in this way how many viewpoints are seen at cell can be identified.

Viewsheds and cumulative viewsheds can be easily calculated by means of standard GIS tools, however they suffer from the limitation due to the lack of the visual attenuation with distance, so that when the distance increases the results of a viewsheds analysis are merely theoretical. The method that will be applied is based on a raster representation of the built environment and on the use of viewshed analyses that is described into Garnero and Fabrizio (in press). This method calculates three different limit visibility distances based on the visual acuity (Eq. 1), on the atmospheric visibility and on the possibility of detection of an object.

The limit visibility distance due to visual acuity, indicated hereinafter as \(d_{vl} \), is equal to

\[
 d_{vl} = \frac{D}{\tan\left(\frac{a \pi}{60 \cdot 180}\right)} \leq D \frac{60 \cdot 180}{a \pi}
\]

where \(a \) is the visual acuity in minutes of arc and \(D \) the object size. Considering an object that has a size of 20 m (that may be, for example, one of the two dimensions of a building plan), the maximum distance at which it can be seen is 69 km with a visual acuity of 1.

Even though visual acuity sets a physical limit to the mutual view distance between two points in a GIS model, in practice in many cases the atmospheric visibility may limit the maximum visibility distance rather than the visual acuity. Values of visibility distance can be obtained from weather registration stations where usually the visibility is measured in km. Rather then specific weather registrations, a typical behaviour of this parameter can be found on the test reference years\(^1\) (TRY) used for example for the energy performance calculations, and will be adopted later. The mean monthly values of the hourly values of visibility for the Torino location are reported in Figure 1, where it can be found that the lower values of visibility occurs in September and October, while the greater values occurs in August and January. Between the lower and the

\(^1\) A Test Reference Year (TRY) is a file that contains the 8760 hourly values of the various weather quantities representative of the mean climatic conditions of a location, see for example the TRY computed by the ASHRAE within the International Weather for Energy Calculation programme. They were initially developed to be used in order to determine the heating and cooling energy needs of buildings.
greater visibility there is a difference of 7 km. Atmospheric visibility sets therefore a time variable limit visibility distance that is indicated hereinafter as $d_{l,a}$.

Finally, not only the physical aspects of the vision (visual acuity, contrast, etc.) but also the psychophysical effect of perception should be considered, because visual acuity regards only the possibility that an object is seen from a certain distance but does not assure that the subject detects and recognizes the object. To take into account this perceptive side of the vision, visual thresholds were introduced in psychophysics: a visual threshold is the minimal stimulus that can be perceived, a sort of a boundary between detecting and not detecting (Shang and Bishop, 2000).

Having defined the visual size (or magnitude) S as the portion of the field of view that is occupied by the object and measured in square minutes, the limit visibility distance for the psychological perception $d_{l,p}$ can be determined as

$$d_{l,p} = \frac{180 \cdot 60 \sqrt{DH}}{\pi S}$$ \hspace{1cm} (2)

where D and H are the horizontal and vertical target dimensions. Shang and Bishop (2000) have plotted on graphs which have visual size (in square minutes) and visual contrast as axes, thresholds curves that express the trade-off between threshold visual size and the threshold visual contrast for the informed recognition, the uninformed recognition and the uniformed detection. These curves, and the related logistic regression equations also derived, can be used in landscape studies to determine the visual impact on object introduced on the landscape and were adopted in this work.

For example, considering the uninformed recognition of a target characterized by object sizes equal to 20 m and 70 m, for a visual contrast of 30% the threshold visual size is equal to 50 square minutes and the limit visibility distance for the psychological perception is 18.19 km. If the contrast falls to 13% the threshold visual size is 100 and the limit distance becomes 12.26 km, while at the lowest value of contrast (7 %) considered by Shang and Bishop (2000), the threshold visual size is 250 and the limit distance becomes 8 km.

4 IMPLEMENTATION ON CASE STUDIES

The visibility analysis was conducted on the study area of the city of Turin, one of the largest cities of the North-West of Italy, and on the two new out-of-scale buildings, two skyscrapers (one under construction
and one at the end of its construction stage). The general specifications concerning the study area are reported in the following paragraph, and then the analyses are conducted for each case study building.

4.1 TERRAIN MODEL

The terrain height is the new DTM of the Piedmont Region which has a cell size of 5 m x 5m. Data for the present work have been provided by Regione Piemonte survey aimed to the production of a digital orthoimage at 1:5000 scale and a digital terrain model at Level 4 in accordance with Intesa specifications (CISIS, 2011) as reported in Table 1 (Godone and Garnero, 2013).

<table>
<thead>
<tr>
<th>Type</th>
<th>DEM or DSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy: bare ground $PH(a)$</td>
<td>0.30</td>
</tr>
<tr>
<td>Height accuracy: with tree cover $> 70%$ $PH(b)$ (DEM)</td>
<td>0.60</td>
</tr>
<tr>
<td>Height accuracy: buildings (DSM) $PH(c)$</td>
<td>0.40</td>
</tr>
<tr>
<td>Height tolerance: bare ground $TH(a)$</td>
<td>0.60</td>
</tr>
<tr>
<td>Height tolerance: with tree cover $> 70%$ $TH(b)$ (DEM)</td>
<td>1.20</td>
</tr>
<tr>
<td>Height tolerance: buildings (DSM) $TH(c)$</td>
<td>0.80</td>
</tr>
<tr>
<td>Planimetric accuracy: PEN</td>
<td>0.30</td>
</tr>
<tr>
<td>Planimetric tolerance: TEN</td>
<td>0.60</td>
</tr>
<tr>
<td>Cellsize:</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1. Specifications of the DTM level 4 - CISIS document "Ortoimmagini e modelli altimetrici a grande scala - Linee Guida (Large scale orthoimagery and elevation models – Guidelines)" shows Level values (meters)

A LiDAR survey was carried out by the employment of ALS 50 II sensor (Leica Geosystems) with MPIA (Multiple Pulse In Air) technology with the following features:

- Maximum Pulse Rate: 150000 Hz (150.000 points/second);
- Maximum scanning frequency: 90 Hz (90 lines/second);
- 4 echoes (1º, 2º, 3º and last);
- Flying height: 200 - 6000 m above ground;
- Field Of View (FOV): 10º - 75 º;
- Side overlap: 200 - 600 m;
- Intensity measured each echo.

In addition to the ordinary survey, in a portion of Regione Piemonte, a more detailed one has been required. It was characterized by the following parameters:

- FOV (Field Of View): 58º;
- LPR (Laser Pulse Rate): 66.400 Hz;
- Scan Rate: 21.4 Hz;
- Average Point Density: 0.22 pts/m²;
- Average Point Spacing: 2.12 m;

The study area is the city of Turin and counts 9 sections at a scale of 1: 10.000 which were jointed on a single DTM resampled at a cell size of 0.5x0.5 m. This resampling obviously does not add any improvement in the quality of information, but was done in order to operate the following calculations. The representation of this DTM is reported in Figure 2 where it can be noted that from west to east there is a slow slope up to the Po river, then there are the hills on the south-east part of the DTM.
4.2 BUILDINGS MODEL

As regards the buildings, the information was taken from Technical City Map of Turin, a cartography on a scale of 1:1000, updated each 6 months with topographic measures. It was obtained as a shape file and with the eaves height of each building. In particular, the 3D model of the city is subdivided into primary (main) and secondary (small) buildings, and every height is derived from aerophotogrammetry techniques.

There are:

- 64,679 main buildings, of which 3,515 have the eaves height equal to zero. In order to retrieve, at least approximately, the heights for these buildings, for which the information on the number of floors above ground was in any case available, the eaves height was estimated summing up the building height (as number of floors by 3 meters) to the ground level.

- 65,334 smaller buildings, of which 28,870 have the eaves height equal to zero; these are mostly low buildings and were deleted.

4.3 GIS PROCESSING

The ArcGIS 10.1 tool was used in all the processing. In order to obtain an information consistent between the two bases of data available, the vectorial data were transported into raster data using the GIS “Polygon to raster” command, which produces a raster with a cell size of 0.5 m, that reports all eaves height of the buildings, and nodata where there are not buildings.
At this point, the two models (DTM and buildings) were merged using the raster calculator and generating a new raster that has the value of the regional DTM if the building raster is null, otherwise it has the value of the building eaves height. In practice, this is a sum of the buildings DTM and of the terrain DTM that produces a DTM where buildings are “extruded” with a cell size of 0.5 m.

A 3D view of the city model (where the height of the buildings was not emphasized) is reported in figure 5. All buildings are coloured in brown while the skyscrapers under consideration in the following paragraphs are coloured in green.

4.4 THE LIMIT VISIBILITY DISTANCE FOR THE ATMOSPHERIC EXTINCTION

In order to consider two different conditions characterized by a different behaviour, the two months with the greater and the lowest visibility values were selected. These are August, with a mean monthly visibility of 12.9 km, and October with a value of 5.8 km (Figure 1). In Figures 6 and 7 the frequency distributions of the hourly values of visibility for those two months are reported. It is easily seen that the frequency distribution of the month with the lower visibility is centred on low values with a maximum at 2 km, while for the month with the highest visibility there is not only one maximum and the distribution presents values spread from 4 km to 35 km.
In order to set the maximum value of the atmospheric visibility as the \(d_{\text{a}} \) distance to be used in the following analyses, the visibility value that is surpassed for the 80\% of the time was selected. These values are 5.2 km for the August month and 1.6 km for the October month. In particular, it is the value of October that will be used as a lower limit of visibility distance.

5 THE SKYSCRAPER # 1

5.1 DESCRIPTION OF THE TARGET

This new building is the first skyscraper of the city of Turin and is located near the historical city centre where two main streets are crossing and in correspondence of one of the main train station of the city (Porta Susa). The tower has a rectangular shape of 36 x 60 m, with a larger basement. The building is under construction since 2009 and it is now completed at least as regards the building structure and the envelope. The building envelope is mainly glazed (more than 50,000 m2 of glazed envelope area). The terrain height of the DTM is equal to the value of 244.80 m; the building height was set to 166 m, thus giving the four upper vertexes of the building at a value of 410.80 m. The skyscraper is indicated by four points (the four vertexes) placed at a height of 410.80 m.

5.2 CALCULATION OF THE VISIBILITY DISTANCES

For the calculations of the limit visibility distances, the following parameters were selected:

- object size \(D \) equal to 79.2 m;
- object size \(H \) equal to 146 m;
- visual acuity of 1;
- threshold visual size \(S \) of 100 square minutes (uninformed recognition with a contrast of 13\%).

The object size \(D \) was taken as the diagonal of the rectangular shape, while the object size \(H \) is equal to the building height reduced of the height of the surrounding buildings equal to 20 m.
The previous assumptions give a limit visibility distance for the visual acuity d_{vl} of 272 km and a limit visibility distance for the psychological perception d_{pl} of 37.0 km. Since the lower of these distances is greater than most of the visibility distances for atmospheric extinction (see Figure 7), for such building it is merely always the atmospheric visibility that limits the visual detection.

5.3 VISIBILITY MAPS

In the following Figures 10 and 11 the visibility maps obtained with a visibility distance of 20 km and with a visibility distance of 1.6 km are reported. These visibility maps are cumulative viewsheds, determined using raster algebra and summing up the results of the visibility for each of the four points of visibility into which the skyscraper was discretized.

It can be seen that in the clear air best case condition, the building will be seen from the vast majority of the city, especially in the neighborhood where green parks areas alternate to blocks of development. This may be already verified today by a specific survey because the building is completed.

In order to give a quantitative evaluation of the visibility of the skyscraper, from the visibility map of Figure 10 the percentage of streets that falls within the visible set was calculated. This was done considering the fact that the urban landscape is visible by people walking in the streets, and that parameter can be of interest in order to determine how much this new landmark building is visible or not. From the analyses conducted on the shape files of streets, the total area of streets (which considers streets as well as yards) amounts at 2,575,802 m² (about 2% of the city surface). Using raster algebra on streets and visibility layers, it was calculated that 799,142 m² see at least one point of the skyscraper. In percentage terms, this means that – in good atmospheric visibility conditions – 31% of the streets of the city of Turin are seeing this building.

![Fig. 10 and Fig. 11](image)

6 THE SKYSCRAPER # 2

6.1 DESCRIPTION OF THE TARGET

This skyscraper has a square building shape of 45 m of side and is designed in the south of the city of Turin, near a railway station and a large tertiary district that was before the largest factory in Turin (Lingotto area). Once completed, this skyscraper will be the highest in Italy, including 42 floors, two of them underfloor: at the 43rd floor there will be a wooden roof open to the public. The project has been amended several times,
bringing the initial height of 220 m to the final value of 210 m. On the facades, 1,000 m² of photovoltaic panels are going to be installed in order to ensure, as much as possible, the energy production of the building. The large windows construction is made to reduce the need for artificial lighting. The total land area on which the skyscraper is going to be built is approximately 70,000 m²; around 60,000 m² of retail space are expected in order to develop this urban district. This project is also connected with another residential district for approx 5,000 inhabitants and a new railway station (Lingotto) with a bridge structure that will connect the current the station to the skyscraper.

The terrain height of the DTM is equal to the value of 234.50 m; the building height was set to 210 m, thus giving the four upper vertexes of the building at a value of 444.50 m. The skyscraper is indicated by four points (the four vertexes) placed at a height of 444.50 m.

6.2 CALCULATION OF THE VISIBILITY DISTANCES

For the calculations of the limit visibility distances, the following parameters were selected:
- object size \(D \) equal to 63.6 m;
- object size \(H \) equal to 190 m;
- visual acuity of 1;
- threshold visual size \(S \) of 100 square minutes (uninformed recognition with a contrast of 13%).

The object size \(D \) was taken as the diagonal of the square of 45 m, while the object size \(H \) is equal to the building height reduced of the height of the surrounding buildings equal to 20 m.

The previous assumptions give a limit visibility distance for the visual acuity \(d_{lv} \) of 218 km and a limit visibility distance for the psychological perception \(d_{lp} \) of 37.8 km. Since the lower of these distances is greater than most of the visibility distances for atmospheric extinction (see Figure 7), for such building it is merely always the atmospheric visibility, with its continuous variation of the visibility distance as a function of the meteorological conditions, that limits the visual detection.

6.3 VISIBILITY MAPS

In the following Figures 13 and 14 the visibility maps obtained with a visibility distance of 20 km and with a visibility distance of 1.6 km, as discussed in paragraph 4.4. Again, these visibility maps are cumulative viewsheds, determined using raster algebra and summing up the results of the visibility for each of the four points of visibility into which the skyscraper was discretized. In order to give a quantitative evaluation of the visibility of the skyscraper, from the visibility map of Figure 13 the percentage of streets that falls within the visible set was calculated. This was done considering the fact that the urban landscape is visible by people.
walking in the streets, and that parameter can be of interest in order to determine how much this new landmark building is visible or not. From the analyses conducted on the shape files of streets, the total area of streets (which considers streets as well as yards) amounts at 2,575,802 m² (about 2% of the city surface). Using raster algebra on streets and visibility layers, it was calculated that 819,316 m² see at least one point of the skyscraper. In percentage terms, this means that – in good atmospheric visibility conditions – 32% of the streets of the city of Turin will see the new building. As can be seen from Figure 14 these areas may also be far from the skyscraper itself, which is located in the south sector of the city. An analysis on the other neighbouring municipalities should be done in order to ascertain to what degree the building is seen from the municipalities that are placed at the south of the city of Turin.

![Fig. 13 and Fig. 14](image)

7 CONCLUSIONS

The visibility analysis for urban environment was conducted on the study area of the city of Turin, one of the largest cities of the North-West of Italy. This procedure can become a shared methodology for landscape analyses, integrating both terrain and building models, that are now particularly considered in EIA procedures. A knowledge that is not qualitative but objective may be incorporated into the design process, in order to suggest improvements and corrections in the visual impact analysis and in the mitigation measures, in particular for a city like Turin where two new skyscrapers are under construction and many others are under design. A skyscraper, in fact, is an object that, by its nature, cannot completely be mitigated from the point of view of the visual impact the tools and methodologies here described allow decision-makers and all the community to know how much and in what way the building changes will take effect on the perception of places.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>apparent diameter</td>
<td>minutes</td>
</tr>
<tr>
<td>C</td>
<td>visual contrast</td>
<td>%</td>
</tr>
<tr>
<td>d</td>
<td>distance of observation</td>
<td>km</td>
</tr>
<tr>
<td>D</td>
<td>(horizontal) object size</td>
<td>m</td>
</tr>
<tr>
<td>d_a</td>
<td>limit visibility distance for the atmospheric extinction</td>
<td>km</td>
</tr>
<tr>
<td>d_p</td>
<td>limit visibility distance for the psychological perception</td>
<td>km</td>
</tr>
<tr>
<td>d_v</td>
<td>limit visibility distance for the visual acuity</td>
<td>km</td>
</tr>
<tr>
<td>H</td>
<td>vertical object size</td>
<td>m</td>
</tr>
<tr>
<td>S</td>
<td>visual size</td>
<td>square minutes</td>
</tr>
<tr>
<td>α</td>
<td>horizontal angle subtended by the target</td>
<td>minutes</td>
</tr>
<tr>
<td>β</td>
<td>vertical angle subtended by the target</td>
<td>minutes</td>
</tr>
</tbody>
</table>

Nomenclature
REFERENCES

Benedikt M L, 1979, "To take hold of space: isovists and isovist fields" Environment and Planning B 6(1) 47 – 65.

AUTHORS’ PROFILE

Enrico Fabrizio

Architect, PhD in Energy technologies at the Polytechnic of Turin and PhD in Civil Engineering at the INSA de Lyon, is assistant professor at the Department of Agricultural, Forest and Food Sciences of the University of Turin

Gabriele Garnero

Professor of Geomatic at Degree Courses in Forestry and Environmental Sciences at the University of Turin and in Planning Sciences at the Polytechnic of Turin.